PCR Concentration Conversions

Ben Shirt-Ediss

Newcastle University UK

Part I For ssDNA

I use these calculations – they are more general. A hybrid ss-dsDNA complex can be separated, and treated as a ssDNA complex.

1 Mass Concentration to Molar Concentration

I want to convert $ng/\mu l$ to nM.

- In a volume of $1\mu l$, ssDNA at mass concentration $3.42ng/\mu l$ will be present at 3.42ng.
- The number of moles of ssDNA molecules can be calculated in this mass.
- There is this number of moles in $1\mu l$
- $1\mu l$ is $10^{-6}l$, therefore in 1 litre, there will be this many moles: 10^6 multiplied by the number of moles in $1\mu l$.
- We have a molar concentration of ssDNA (moles per litre).
- To convert a molar concentration to nM, multiply by 10^9 . (There are 10^9nM in every M)
- I assume that the dye FU on the gel is reflective of the mass concentration, and not that it binds just to the dsDNA parts of a complex.

Mass to Moles of ssDNA Molecules

From the NEB webpage https://nebiocalculator.neb.com/#!/formulas:

$$moles \ ssDNA = \frac{mass \ of \ ssDNA \ (g)}{molecular \ weight \ of \ ssDNA \ (g/mol)}$$

molecular weight of ssDNA =

(number of deoxynucleotide monophosphates of ssDNA × average molecular weight of a deoxynucleotide monophosphate)+

 $18.02 \mathrm{g/mol}$

- average molecular weight of a deoxynucleotide monophosphate = 308.97 g/mol, excluding the water molecule removed during polymerization.
- \bullet The 18.02 g/mol accounts for the -OH and -H added back to the ends.

moles ssDNA =
$$\frac{ng/10^9}{(nt \times 308.97) + 18.02}$$

Formula Steps

I assume the volume is 1ul to do this conversion.

$$ng = ng/\mu l$$

moles ssDNA in
$$1\mu l = \frac{ng/10^9}{(nt \times 308.97) + 18.02}$$

moles ssDNA in 1l = moles ssDNA in $1\mu l \times 10^6 = \text{Molar ssDNA}$ concentration

nM ssDNA concentration=Molar ssDNA concentration \times 10⁹

Final Formula

$$nM = \left(\frac{(ng/\mu l)/10^9}{(nt \times 308.97) + 18.02} \times 10^6\right) \times 10^9$$

Simplifying:

$$nM = \left(\frac{(ng/\mu l)}{10^9} \times \frac{1}{(nt \times 308.97) + 18.02} \times 10^6\right) \times 10^9$$

$$nM = \left(\frac{1}{10^3} \times \frac{(ng/\mu l)}{(nt \times 308.97) + 18.02}\right) \times 10^9$$

$$nM = 10^6 \times \frac{(ng/\mu l)}{(nt \times 308.97) + 18.02}$$
(1)

Which is approximately equal to the bp formula below, if nt = 2bp

2 Mass Concentration to Molar Concentration

Inverting Eq. 1:

$$nM\left((nt\times 308.97) + 18.02\right) = 10^6 (ng/\mu l)$$

$$ng/\mu l = nM \times \frac{(nt \times 308.97) + 18.02}{10^6}$$

Part II For dsDNA

3 Mass Concentration to Molar Concentration

$$nM = \frac{ng/\mu l}{g/mol} \times 10^6$$

$$nM = \frac{ng/\mu l}{660 \times bp} \times 10^6$$

If the mass concentration of dsDNA fragments is $ng/\mu l$, and each of these fragments is made of bp base <u>pairs</u>, then this formula gives the nanomolar concentration of these fragments.

Summary: The function from ng/ul mass conc $\{S\}$ to nanomolar conc [S] is:

$$f_1(\{S\}, bp) = \{S\} \frac{10^6}{660 \times bp}$$

4 Molar Concentration to Mass Concentration

$$ng/\mu l = nM \left(g/mol \right) \times \frac{1}{10^6}$$

$$ng/\mu l = nM \left(660 \times bp \right) \times \frac{1}{10^6}$$

If the molar concentration of dsDNA fragments is nM, and each of these fragments is made of bp base <u>pairs</u>, then this formula gives the nanograms per microlitre mass concentration of these fragments.

Summary: The function from nanomolar conc [S] to ng/ul mass conc $\{S\}$ is:

$$f_2([S], bp) = [S] \frac{660 \times bp}{10^6}$$