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Sroad Aim

How/why did the first minimal chemical agents
emerge at the origins of life”

modulation of the coupling

Biological agent: "An

iINndividuated autonomous

organisation that adaptively

regulates ts coupling with its
AGENCY coupling  ENVironment environment and contributes to
sustaining itself as a
conseqguence’,

Defining Agency. Barandiaran et al. Journal of Adaptive Behaviour (2009)



Regulation Mechanisms in Cells
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“repiotic Origins of Regulation

How did protocells develop membrane I
mechanisms to: state

internal

state \

memory store

1. Regulate internal dynamics

regulatory network

2. Regulate behaviour towards
environment (including agent-
agent interactions) 4

...that enabled them to survive In

variable and challenging
environmental conditions?

metabolism

Figure adapted from: xabier.barandiaran.net



Origins of Regulation

Protocell Ecology

How did protocells develop
mechanisms to:

Species 2

1. Regulate internal dynamics

2. Regulate behaviour towards

environment (mc\udmg agent-

agent interactions)

...that enabled them to survive In

variable and challenging
environmental conditions? Species 3




The Model

...Basque for

Formal set of directives
Procedural rules
'Code of conduct'

Araudia
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2rotocell Ecology iIn Chemostat
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MICROBIOLOGY

Emergent simplicity in microbial
community assembly

Joshua E. Goldford">*, Nanxi Lu®*, Djordje Baji¢®, Sylvie Estrela®, Mikhail Tikhonov*”,
Alicia Sanchez-Gorostiaga®, Daniel Segré’%7, Pankaj Mehta’t, Alvaro Sanchez>3t

A major unresolved question in microbiome research is whether the complex taxonomic
architectures observed in surveys of natural communities can be explained and predicted
by fundamental, quantitative principles. Bridging theory and experiment is hampered

by the multiplicity of ecological processes that simultaneously affect community assembly
in natural ecosystems. We addressed this challenge by monitoring the assembly of
hundreds of soil- and plant-derived microbiomes in well-controlled minimal synthetic
media. Both the community-level function and the coarse-grained taxonomy of the
resulting communities are highly predictable and governed by nutrient availability, despite
substantial species variability. By generalizing classical ecological models to include
widespread nonspecific cross-feeding, we show that these features are all emergent
properties of the assembly of large microbial communities, explaining their ubiquity in

natural microbiomes.

icrobial communities play critical roles

in a wide range of natural processes, from

animal development and host health to

biogeochemical cycles (7-3). Recent ad-

vances in DNA sequencing have allowed
us to map the composition of these communities
with high resolution. This has motivated a surge
of interest in understanding the ecological mech-
anisms that govern microbial community as-
sembly and function (4). A quantitative, predictive
understanding of microbiome ecology is required
to design effective strategies to rationally manip-
ulate microbial communities toward beneficial
states.

Surveys of microbiome composition across a
wide range of ecological settings, from the ocean
to the human body (2, 3), have revealed intriguing
empirical patterns in microbiome organization.
These widely observed properties include high
microbial diversity, the coexistence of multiple
closely related species within the same functional
group, functional stability despite large species
turnover, and different degrees of determinism
in the association between nutrient availability
and taxonomic composition at different phylo-

!Graduate Program in Bioinformatics and Biological Design
Center, Boston University, Boston, MA 02215, USA. “The
Rowland Institute at Harvard University, Cambridge,

MA 02142, USA. 3Department of Ecology and Evolutionary
Biology, Microbial Sciences Institute, Yale University, New
Haven, CT 06511, USA. *John A. Paulson School of
Engineering and Applied Sciences, Harvard University,
Cambridge, MA 02138, USA. °Department of Applied
Physics, Stanford University, Stanford, CA 94305, USA.
5Departments of Biology and Biomedical Engineering, Boston
University, Boston, MA 02215, USA. "Department of Physics,
Boston University, Boston, MA 02215, USA.

*These authors contributed equally to this work.
tCorresponding author. Email: alvaro.sanchez@yale.edu (A.S.);
pankajm@bu.edu (P.M.)

genetic levels (3, 5-10). These observations have
led to the proposal that common organizational
principles exist in microbial community assembly
(6, 7). However, the lack of a theory of microbiome
assembly is hindering progress toward explaining
and interpreting these empirical findings, and
it remains unknown which of the functional
and structural features exhibited by microbiomes
reflect specific local adaptations at the host or
microbiome level (10) and which are generic
properties of complex, self-assembled micro-
bial communities.

Efforts to connect theory and experiments to
understand microbiome assembly have typically
relied on manipulative bottom-up experiments
with a few species (17-13). Although this approach
is useful for providing insights into specific mech-
anisms of interactions, it is unclear to what extent
findings from these studies scale up to predict the
generic properties of large microbial communities
or the interactions therein. Of note is the ongoing
debate about the relative contributions of com-
petition and facilitation (74, 15) and the poorly
understood role that high-order interactions play
in microbial community assembly (11, 16, 17). To
move beyond empirical observations and con-
nect statistical patterns of microbiome assembly
with ecological theory, we need to study the as-
sembly of large numbers of large multispecies
microbiomes under highly controlled and well-
understood conditions that allow proper com-
parison between theory and experiment.

Assembly of large microbial
communities on a single
limiting resource

To meet this challenge, we followed a high-
throughput ex situ cultivation protocol to mon-
itor the spontaneous assembly of ecologically

Goldford et al., Science 361, 469-474 (2018) 3 August 2018

stable microbial communities derived from nat-
ural habitats in well-controlled environments;
we used synthetic (M9) minimal media con-
taining a single externally supplied source of
carbon, as well as sources of all of the necessary
salts and chemical elements required for micro-
bial life (Fig. 1A). Intact microbiota suspensions
were extracted from diverse natural ecosystems,
such as various soils and plant leaf surfaces
(methods). Suspensions of microbiota from these
environments were highly diverse and taxonomi-
cally rich (fig. S1), ranging between 110 and 1290
exact sequence variants (ESVs). We first inocu-
lated 12 of these suspensions of microbiota into
fresh minimal media with glucose as the only
added carbon source and allowed the cultures to
grow at 30°C in static broth. We then passaged
the mixed cultures in fresh media every 48 hours
with a fixed dilution factor of D = 8 x 1072 for a
total of 12 transfers (~84 generations). At the end
of each growth cycle, we used 16S ribosomal
RNA (rRNA) amplicon sequencing to assay the
community composition (Fig. 1A and methods).
High-resolution sequence denoising allowed us
to identify ESVs, which revealed community struc-
ture at single-nucleotide resolution (I8).

Most communities stabilized after ~60 genera-
tions, reaching stable population equilibria in
nearly all cases (Fig. 1B and fig. S2). For all of
the 12 initial ecosystems, we observed large mul-
tispecies communities after stabilization that
ranged from 4 to 17 ESVs at a sequencing depth
0f 10,000 reads; further analysis indicated that
this is a conservative estimate of the total rich-
ness in our communities (figs. S3 and S4 and
methods). We confirmed the taxonomic assign-
ments generated from amplicon sequencing by
culture-dependent methods, including the iso-
lation and phenotypic characterization of all
dominant genera within a representative com-
munity (fig. S5).

Convergence of bacterial
community structure at the
family taxonomic level

High-throughput isolation and stabilization of
microbial consortia allowed us to explore the
rules governing the assembly of bacterial com-
munities in well-controlled synthetic environ-
ments. At the species (ESV) level of taxonomic
resolution, the 12 natural communities assembled
into highly variable compositions (Fig. 1C). How-
ever, when we grouped ESVs by higher taxonomic
ranks, we found that all 12 stabilized communities—
with very diverse environmental origins—converged
into similar family-level community structures
dominated by Enterobacteriaceae and Pseudo-
monadaceae (Fig. 1D). In other words, a similar
family-level composition arose in all commun-
ities despite their very different starting points.
This is further illustrated in fig. S6, where we
show that the temporal variability (quantified
by the B diversity) in family-level composition
is comparable to the variability across inde-
pendent replicates. The same is not true when
we compare taxonomic structure at the subfamily
(genus) level.
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Metabolic Trade-Offs Promote Diversity in a Model Ecosystem
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In nature, a large number of species can coexist on a small number of shared resources; however,
resource-competition models predict that the number of species in steady coexistence cannot exceed the
number of resources. Motivated by recent studies of phytoplankton, we introduce trade-offs into a resource-
competition model and find that an unlimited number of species can coexist. Our model spontaneously
reproduces several notable features of natural ecosystems, including keystone species and population
dynamics and abundances characteristic of neutral theory, despite an underlying non-neutral competition

for resources.

DOI: 10.1103/PhysRevLett.118.028103

An astonishing characteristic of life on Earth is its great
variety. In tropical rainforests, more than 300 tree species
may be found on a single hectare [1], while in one gram of
soil, the number of distinct microbial genomes has been
estimated at ~2000-18, 000 [2]. Explaining this great bio-
diversity has been a main focus of research in ecology. One
major conceptual challenge is embodied by the so-called
“paradox of the plankton” [3]: in the framework of simple
resource-competition models, it has been argued that the
number of species indefinitely coexisting cannot exceed the
number of resources [4—7]. Yet, in apparent contradiction to
this theory, which is known as the competitive exclusion
principle [8], some marine ecosystems host a hundred or
more coexisting species of phytoplankton [9], competing
for only a handful of abiotic nutrients [10].

The limit on diversity set by the competitive exclusion
principle could be overcome in many possible ways.
Even within simple resource-competition models, diverse
populations may emerge from intrinsically oscillatory or
chaotic dynamics [11,12], though the stability of such
solutions in the face of long-term evolution has been
challenged [13]. Looking beyond resource competition,
there are many proposed mechanisms for diversity,
generally falling into three (nonexclusive) categories:
(1) systems never approach steady state due to temporal
variation of the environment, e.g., weather changes [3,14]
or seasonal cycles [15]; (2) real environments are hetero-
geneous in space, e.g., due to environmental gradients such
as temperature, salinity, or exposure to light [16]; (3) eco-
systems are limited by factors other than resources, e.g.,
predation [17,18] or self-limiting toxin production [19].
(For reviews see [20,21].)

While the above mechanisms are likely all broadly
relevant, in the context of phytoplankton, it was recently
suggested that diversity may also persist due to trade-offs
between different traits or abilities [22]. With this in mind,

0031-9007/17/118(2)/028103(5)
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we present a simple resource-competition model in which
species are constrained by a trade-off between their differ-
ent resource utilization abilities. In this model, organisms
collectively shape the resource concentrations around them
to produce a state equally favorable for all, and hence,
an unlimited number of species can coexist. While the
model is highly simplified, it highlights how both trade-offs
and environmental shaping can contribute to ecological
diversity.

We employ a classical resource-competition model [23]
to investigate the population dynamics of m species
competing for p types of nutrients. A “species” o is
specified by its metabolic strategy, namely the coefficients
of its rate of utilization of each nutrient: &, = (a1 .,....%,))-
Conceptually, a,; is proportional to the number of
enzyme molecules allocated by the organism to importing
and processing nutrient i. We assume that enzymes for
different nutrients may have different costs w;, but to reflect
“trade-offs,” all organisms have the same fixed enzyme
budget: >7 | w;a,; = E.

We further assume a well-mixed system such that the
concentration of nutrients is homogeneous and is determined
by the nutrient supply rates s = (s, ..., s,,), by the uptake of
nutrients by organisms, and by a degradation or loss rate y;.
We denote the per-enzyme rate of consumption of nutrient i
by r;. A relevant choice for r; is the Monod function
ci/(K;+c¢;), but it can be any monotone increasing,
continuously differentiable function of ¢; with r;(0) = 0.
The kinetics of nutrient concentration c; is therefore given by

% — 5= (zﬁ:n(,(t)a,,,)r,-(c,-) —pici(t), (1)

where n, is the population of species ¢. Since metabolic
reactions typically occur on a faster time scale than cell
division, we assume a separation of these time scales. It

© 2017 American Physical Society
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We Wanted to Answer Questions Like These
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® |ncrease ecological robustness to varying reactor iNnputs”
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® How IS phylogenetic adaptation related to ontogenetic
adaptation”
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